SEMINARIO DE INVESTIGACIÓN DEL DEPARTAMENTO DE ESTADÍSTICA, UNIVERSIDAD NACIONAL DE COLOMBIA, SEDE BOGOTÁ

SEMINARIO DE INVESTIGACIÓN DEL DEPARTAMENTO DE ESTADÍSTICA, UNIVERSIDAD NACIONAL DE COLOMBIA, SEDE BOGOTÁ

Este seminario se realizará de forma híbrida, presencial y será transmitido por el canal de YouTube de la Facultad de Ciencias.

Fecha: 17 de marzo de 2023 (Viernes)
Hora: 2:00pm
Salón: 208, Edificio: 405.

Lugar: Canal YouTube Facultad de Ciencias

Conferencista:
Marco Avella
Universidad de Columbia

Titulo: Differentially private inference via noisy optimization

Abstract:
We propose a general optimization-based framework for computing differentially private M-estimators and a new method for constructing differentially private confidence regions. Firstly, we show that robust statistics can be used in conjunction with noisy gradient descent or noisy Newton methods in order to obtain optimal private estimators with global linear or quadratic convergence, respectively. We establish local and global convergence guarantees, under both local strong convexity and self-concordance, showing that our private estimators converge with high probability to a small neighborhood of the non-private M-estimators. Secondly, we tackle the problem of parametric inference by constructing differentially private estimators of the asymptotic variance of our private M-estimators. This naturally leads to approximate pivotal statistics for constructing confidence regions and conducting hypothesis testing. We demonstrate the effectiveness of a bias correction that leads to enhanced small-sample empirical performance in simulations. We illustrate the benefits of our methods in several numerical examples.

This is joint work with Casey Bradshaw and Po-Ling Loh

Puede ser una imagen de 1 persona y texto